Particle in an box with infinite-potential walls

Authors:

Department of Chemistry

Physical Chemistry Division

University of Florida

P.O. Box 117200

Gainesville, FL 32611-7200

United States

Instructions:

  • The reader should follow this notebook in the order that it is presented, executing code cells in consecutive order.
In [2]:
from IPython.display import HTML
In [3]:
HTML('''<script>
code_show=true; 
function code_toggle() {
 if (code_show){
 $('div.input').hide();
 } else {
 $('div.input').show();
 }
 code_show = !code_show
} 
$( document ).ready(code_toggle);
</script>
The raw code for this IPython notebook is by default hidden for easier reading. As you scroll through code cell,
they appear as empty cells
with a blue right-side edge
To toggle on/off the raw code, click <a href="javascript:code_toggle()">here</a>.''')
Out[3]:
The raw code for this IPython notebook is by default hidden for easier reading. As you scroll through code cell, they appear as empty cells with a blue right-side edge To toggle on/off the raw code, click here.

Libraries used in this notebook:

On the next cell we are going to import the libraries used in this notebook as well as call some important functions.

In [4]:
import matplotlib as mpl # matplotlib library for plotting and visualization
import matplotlib.pylab as plt # matplotlib library for plotting and visualization
import numpy as np #numpy library for numerical manipulation, especially suited for data arrays

In the next cell we are shutting down eventual warnings displayed by IPython. This cell is optional.

In [5]:
import warnings
warnings.filterwarnings('ignore')

Executing the next cell prints on the screen the versions of IPython, Python and its libraries on your computer. Please check if the versions are up-to-date to facilitate a smooth running of the program.

In [6]:
import sys # checking the version of Python
import IPython # checking the version of IPython
print("Python version = {}".format(sys.version))
print("IPython version = {}".format(IPython.__version__))
print("Matplotlib version = {}".format(plt.__version__))
print("Numpy version = {}".format(np.__version__))
Python version = 2.7.12 (default, Nov 19 2016, 06:48:10) 
[GCC 5.4.0 20160609]
IPython version = 5.1.0
Matplotlib version = 1.11.1
Numpy version = 1.11.1

Special calls:

The next cell configures matplotlib to show figures embedded within the cells it was executed from, instead of opening a new window for each figure.

In [35]:
%matplotlib inline

Particle in a 1D box

In [8]:
from IPython.display import Image
Image(filename='particle_in_an_infinite_box_diagram.png')
Out[8]:

Inside the box, the potential is equal to zero, therefore the Schrödinger equation for this system is given by: $$\frac{-\hbar^2}{2m}\frac{\partial^2\psi_n(x)}{\partial{x}^2} =E\psi_n(x) $$

Since the potential is infinity outside the box, the wavefunction must obey the following Boundary Condition: $$\psi_n(0)=\psi_n(L)=0$$ where L is the length of the box.

After solving the Schrödinger equation, the eigenfunctions obtained are given by:

$$\psi_n(x) = \sqrt{\frac{2}{L}} sin\left(\frac{n\pi}{L}x\right)$$ where $n=1, 2, ..., \infty $.
It is important to emphasize that the quantization (n being only positive integers) is a consequence of the boundary conditions.

Here are a few questions to think about before we move on:

  • Q1: Can you infer, just looking at the graphical representations of $\psi_n(x)$ or $|\psi_n(x)|^2$, what is the quantum state (labeled by its quantum number) n?
  • Q2: What is a node? How do the nodes relate to the Kinetic Energy of the system?
  • Q3: Is it possible to find the particle outside the box?
  • Q4: Does it matter that $\psi_n(x)$ has negative values?
  • Q5: What variables and parameters does $\psi_n(x)$ depend on?

Some of these questions can be answered by plotting the Wavefunction, $\psi_n(x)$ and the Probability Density, $|\psi_n(x)|^2$ for different values of $n$.

In [37]:
# Defining the wavefunction
def psi(x,n,L): return np.sqrt(2.0/L)*np.sin(float(n)*np.pi*x/L)

# Reading the input variables from the user
n = int(input("Enter the value for the quantum number n = "))
L = float(input("Enter the size of the box in Angstroms = "))

# Generating the wavefunction graph
plt.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
x = np.linspace(0, L, 900)
fig, ax = plt.subplots()
lim1=np.sqrt(2.0/L) # Maximum value of the wavefunction
ax.axis([0.0,L,-1.1*lim1,1.1*lim1]) # Defining the limits to be plot in the graph
str1=r"$n = "+str(n)+r"$"
ax.plot(x, psi(x,n,L), linestyle='--', label=str1, color="orange", linewidth=2.8) # Plotting the wavefunction
ax.hlines(0.0, 0.0, L, linewidth=1.8, linestyle='--', color="black") # Adding a horizontal line at 0
# Now we define labels, legend, etc
ax.legend(loc=2);
ax.set_xlabel(r'$L$')
ax.set_ylabel(r'$\psi_n(x)$')
plt.title('Wavefunction')
plt.legend(bbox_to_anchor=(1.1, 1), loc=2, borderaxespad=0.0)

# Generating the probability density graph
fig, ax = plt.subplots()
ax.axis([0.0,L,0.0,lim1*lim1*1.1])
str1=r"$n = "+str(n)+r"$"
ax.plot(x, psi(x,n,L)*psi(x,n,L), label=str1, linewidth=2.8)
ax.legend(loc=2);
ax.set_xlabel(r'$L$')
ax.set_ylabel(r'$|\psi_n|^2(x)$')
plt.title('Probability Density')
plt.legend(bbox_to_anchor=(1.1, 1), loc=2, borderaxespad=0.0)

# Show the plots on the screen once the code reaches this point
plt.show()
Enter the value for the quantum number n = 
Enter the size of the box in Angstroms = 


We can explore the changes in the Wavefunction and Probability Density for a given state n in boxes of different length $L$:

In [10]:
# Reading the input boxes sizes from the user, and making sure the values are not larger than 20 A
L = 100.0
while(L>20.0):
    L1 = float(input(" To compare wavefunctions for boxes of different lengths \nenter the value of L for the first box  (in Angstroms and not larger then 20 A) = "))
    L2 = float(input("Enter the value of L for the second box (in Angstroms and not larger then 20) = "))
    L = max(L1,L2)
    if(L>20.0):
        print ("The sizes of the boxes cannot be larger than 20 A. Please enter the values again.\n")

# Generating the wavefunction and probability density graphs
plt.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
fig, ax = plt.subplots(figsize=(12,6))
ax.spines['right'].set_color('none')
ax.xaxis.tick_bottom()
ax.spines['left'].set_color('none')
ax.axes.get_yaxis().set_visible(False)
ax.spines['top'].set_color('none')
val = 1.1*max(L1,L2)
X1 = np.linspace(0.0, L1, 900,endpoint=True)
X2 = np.linspace(0.0, L2, 900,endpoint=True)
ax.axis([-0.5*val,1.5*val,-np.sqrt(2.0/L),3*np.sqrt(2.0/L)])
ax.set_xlabel(r'$X$ (Angstroms)')
strA="$\psi_n$"
strB="$|\psi_n|^2$"
ax.text(-0.12*val, 0.0, strA, rotation='vertical', fontsize=30, color="black")
ax.text(-0.12*val, np.sqrt(4.0/L), strB, rotation='vertical', fontsize=30, color="black")
str1=r"$L = "+str(L1)+r"$ A"
str2=r"$L = "+str(L2)+r"$ A"
ax.plot(X1,psi(X1,n,L1)*np.sqrt(L1/L), color="red", label=str1, linewidth=2.8)
ax.plot(X2,psi(X2,n,L2)*np.sqrt(L2/L), color="blue", label=str2, linewidth=2.8)
ax.plot(X1,psi(X1,n,L1)*psi(X1,n,L1)*(L1/L) + np.sqrt(4.0/L), color="red", linewidth=2.8)
ax.plot(X2,psi(X2,n,L2)*psi(X2,n,L2)*(L2/L) + np.sqrt(4.0/L), color="blue", linewidth=2.8)
ax.margins(0.00)
ax.legend(loc=9)
str2="$V = +\infty$"
ax.text(1.03*val,  0.5*np.sqrt(2.0/L), str2, rotation='vertical', fontsize=40, color="black")
ax.text(-0.3*val, 0.5*np.sqrt(2.0/L), str2, rotation='vertical', fontsize=40, color="black")
ax.vlines(0.0, -np.sqrt(2.0/L), 2.5*np.sqrt(2.0/L), linewidth=4.8, color="red")
ax.vlines(L1, -np.sqrt(2.0/L), 2.5*np.sqrt(2.0/L), linewidth=4.8, color="red")
ax.vlines(0.0, -np.sqrt(2.0/L), 2.5*np.sqrt(2.0/L), linewidth=4.8, color="blue")
ax.vlines(L2, -np.sqrt(2.0/L), 2.5*np.sqrt(2.0/L), linewidth=4.8, color="blue")
ax.hlines(0.0, 0.0, L, linewidth=1.8, linestyle='--', color="black")
ax.hlines(np.sqrt(4.0/L), 0.0, L, linewidth=1.8, linestyle='--', color="black")
plt.title('Wavefunction and Probability Density', fontsize=30)
str3=r"$n = "+str(n)+r"$"
ax.text(1.1*L,np.sqrt(4.0/L), r"$n = "+str(n)+r"$", fontsize=25, color="black")
plt.legend(bbox_to_anchor=(0.73, 0.95), loc=2, borderaxespad=0.)

# Show the plots on the screen once the code reaches this point
plt.show()
 To compare wavefunctions for boxes of different lengths
Enter the value for the quantum number n = 
Enter the value of L for the first box  (in Angstroms, not larger then 20 A) = 
Enter the value of L for the second box (in Angstroms, not larger then 20 A) = 


We can also look at the allowed values of energy, given by: $$E_n = \frac{n^2 h^2}{8mL^2}$$
where m is the mass of the particle.

Note: Did you notice that $\psi_n(x)$ doesn't depend on the mass of the particle?

In contrast to the solution in the free particle system, for a particle confined within the box, not every energy value is allowed. We see that quantization is a direct consequence of the boundary condition. In other words: confinement leads to quantization.

Let's now analyze how the Energy Levels $E_n$ for an electron change as a function of the size of the box.

In [11]:
#Given the following parameters

h=6.62607e-34    #planck's constant in joules
me=9.1093837e-31  # mass of an electron in kg
# (h**2 / (me*8))* (1e10)**2 *6.242e+18  #is the prefactor using length units is Angstroms and then converted into electron volts

# Defining a function to compute the energy

def En(n,L,m): return (h**2 / (m*8))* (1e10)**2 *6.242e+18*((float(n)/L)**2)

# Reading the input variables from the user
L1 = float(input(" To see how the energy levels change for boxes of different lengths, \nenter the value for L for the first box (in Angstroms) = "))
nmax1 = int(input("Enter the number of levels you want to plot for the first box = "))
L2 = float(input("Enter the value for L for the second box (in Angstroms) = "))
nmax2 = int(input("Enter the number of levels you want to plot for the second box = "))

# Generating the graph
plt.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
fig, ax = plt.subplots(figsize=(8,12))
ax.spines['right'].set_color('none')
ax.yaxis.tick_left()
ax.spines['bottom'].set_color('none')
ax.axes.get_xaxis().set_visible(False)
ax.spines['top'].set_color('none')
val = 1.1*max(En(nmax1,L1,me),En(nmax2,L2,me))
val2= 1.1*max(L1,L2)
ax.axis([0.0,10.0,0.0,val])
ax.set_ylabel(r'$E_n$ (eV)')
for n in range(1,nmax1+1):
    str1="$n = "+str(n)+r"$, $E_{"+str(n)+r"} = %.3f$ eV"%(En(n,L1,me))
    ax.text(0.6, En(n,L1,me)+0.01*val, str1, fontsize=16, color="red")
    ax.hlines(En(n,L1,me), 0.0, 4.5, linewidth=1.8, linestyle='--', color="red")
for n in range(1,nmax2+1):
    str1="$n = "+str(n)+r"$, $E_{"+str(n)+r"} = %.3f$ eV"%(En(n,L2,me))
    ax.text(6.2, En(n,L2,me)+0.01*val, str1, fontsize=16, color="blue")
    ax.hlines(En(n,L2,me), 5.5, 10.0, linewidth=1.8, linestyle='--', color="blue")
str1=r"$L = "+str(L1)+r"$ A"
plt.title("Energy Levels for a particle of mass = $m_{electron}$ \n ", fontsize=30)
str1=r"$L = "+str(L1)+r"$ A"
str2=r"$L = "+str(L2)+r"$ A"
ax.text(1.5,val, str1, fontsize=25, color="red")
ax.text(6,val, str2, fontsize=25, color="blue")

# Show the plots on the screen once the code reaches this point
plt.show()
 To see how the energy levels change for boxes of different lengths,
Enter the value for L for the first box (in Angstroms) = 
Enter the number of levels you want to plot for the first box = 
Enter the value for L for the second box (in Angstroms) = 
Enter the number of levels you want to plot for the second box = 


and how the Energy Levels, $E_n$ change as a function of the mass of the particle.

In [12]:
# Reading the input variables from the user
L = float(input(" Eenter the value for L for both boxes (in Angstroms) = "))
m1 = input(" To see how the energy levels change for particles of different mass, \nEnter the value of the mass for the first particle (in units of the mass of 1 electron) = ")
nmax1 = int(input("Enter the number of levels you want to plot for the first box = "))
m2 = input("Enter the value of the mass for the second particle (in units of the mass of 1 electron) = ")
nmax2 = int(input("Enter the number of levels you want to plot for the second box = "))

# Generating the graph
plt.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
fig, ax = plt.subplots(figsize=(8,12))
ax.spines['right'].set_color('none')
ax.yaxis.tick_left()
ax.spines['bottom'].set_color('none')
ax.axes.get_xaxis().set_visible(False)
ax.spines['top'].set_color('none')
val = 1.1*max(En(nmax1,L,m1*me),En(nmax2,L,m2*me))
val2= 1.1*max(m1,m2)
ax.axis([0.0,10.0,0.0,val])
ax.set_ylabel(r'$E_n$ (eV)')
for n in range(1,nmax1+1):
    str1="$n = "+str(n)+r"$, $E_{"+str(n)+r"} = %.3f$ eV"%(En(n,L,m1*me))
    ax.text(0.6, En(n,L,m1*me)+0.01*val, str1, fontsize=16, color="green")
    ax.hlines(En(n,L,m1*me), 0.0, 4.5, linewidth=1.8, linestyle='--', color="green")
for n in range(1,nmax2+1):
    str1="$n = "+str(n)+r"$, $E_{"+str(n)+r"} = %.3f$ eV"%(En(n,L,m2*me))
    ax.text(6.2, En(n,L,m2*me)+0.01*val, str1, fontsize=16, color="magenta")
    ax.hlines(En(n,L,m2*me), 5.5, 10.0, linewidth=1.8, linestyle='--', color="magenta")
str1=r"$m = "+str(m1)+r"$ A"
plt.title("Energy Levels for two particles with different masses\n ", fontsize=30)
str1=r"$m_1 = "+str(m1)+r"$ $m_e$ "
str2=r"$m_2 = "+str(m2)+r"$ $m_e$ "
ax.text(1.1,val, str1, fontsize=25, color="green")
ax.text(6.5,val, str2, fontsize=25, color="magenta")

# Show the plots on the screen once the code reaches this point
plt.show()
 Eenter the value for L for both boxes (in Angstroms) = 
 To see how the energy levels change for particles of different mass,
Enter the value of the mass for the first particle (in units of the mass of 1 electron) = 
Enter the number of levels you want to plot for the first box = 
Enter the value of the mass for the second particle (in units of the mass of 1 electron) = 
Enter the number of levels you want to plot for the second box = 


We can combine the information from the wavefunctions, probability density, and energies into a single plot that compares the wavefunctions and the probability densities for different states, each one represented at its energy value. These plots are made using the electron mass.

In [13]:
# Here the users inputs the value of L
L = float(input("Enter the value of L (in Angstroms) = "))
nmax = int(input("Enter the maximum value of n you want to plot = "))

# Generating the wavefunction graph
fig, ax = plt.subplots(figsize=(12,9))
ax.spines['right'].set_color('none')
ax.xaxis.tick_bottom()
ax.spines['left'].set_color('none')
ax.axes.get_yaxis().set_visible(False)
ax.spines['top'].set_color('none')
X3 = np.linspace(0.0, L, 900,endpoint=True)
Emax = En(nmax,L,me)
amp = (En(2,L,me)-En(1,L,me)) *0.9
Etop = (Emax+amp)*1.1
ax.axis([-0.5*L,1.5*L,0.0,Etop])
ax.set_xlabel(r'$X$ (Angstroms)')

for n in range(1,nmax+1):
    ax.hlines(En(n,L,me), 0.0, L, linewidth=1.8, linestyle='--', color="black")
    str1="$n = "+str(n)+r"$, $E_{"+str(n)+r"} = %.3f$ eV"%(En(n,L,me))
    ax.text(1.03*L, En(n,L,me), str1, fontsize=16, color="black")
    ax.plot(X3,En(n,L,me)+amp*np.sqrt(L/2.0)*psi(X3,n,L), color="red", label="", linewidth=2.8)
ax.margins(0.00)
ax.vlines(0.0, 0.0, Etop, linewidth=4.8, color="blue")
ax.vlines(L, 0.0, Etop, linewidth=4.8, color="blue")
ax.hlines(0.0, 0.0, L, linewidth=4.8, color="blue")
plt.title('Wavefunctions', fontsize=30)
plt.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.)
str2="$V = +\infty$"
ax.text(-0.15*L, 0.6*Emax, str2, rotation='vertical', fontsize=40, color="black")

# Generating the probability density graph
fig, ax = plt.subplots(figsize=(12,9))
ax.spines['right'].set_color('none')
ax.xaxis.tick_bottom()
ax.spines['left'].set_color('none')
ax.axes.get_yaxis().set_visible(False)
ax.spines['top'].set_color('none')
X3 = np.linspace(0.0, L, 900,endpoint=True)
Emax = En(nmax,L,me)
ax.axis([-0.5*L,1.5*L,0.0,Etop])
ax.set_xlabel(r'$X$ (Angstroms)')
for n in range(1,nmax+1):
    ax.hlines(En(n,L,me), 0.0, L, linewidth=1.8, linestyle='--', color="black")
    str1="$n = "+str(n)+r"$, $E_{"+str(n)+r"} = %.3f$ eV"%(En(n,L,me))
    ax.text(1.03*L, En(n,L,me), str1, fontsize=16, color="black")
    ax.plot(X3,En(n,L,me)+ amp*(np.sqrt(L/2.0)*psi(X3,n,L))**2, color="red", label="", linewidth=2.8)
ax.margins(0.00)
ax.vlines(0.0, 0.0, Etop, linewidth=4.8, color="blue")
ax.vlines(L, 0.0, Etop, linewidth=4.8, color="blue")
ax.hlines(0.0, 0.0, L, linewidth=4.8, color="blue")
plt.title('Probability Density', fontsize=30)
plt.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.)
str2="$V = +\infty$"
ax.text(-0.15*L, 0.6*Emax, str2, rotation='vertical', fontsize=40, color="black")

# Show the plots on the screen once the code reaches this point
plt.show()
Enter the value of L (in Angstroms) = 
Enter the maximum value of n you want to plot = 


Once we know the properties of a 1D box, we can use separation of variables to find the solutions to the 2D and 3D box problem.

Particle in a 2D box

Since the Hamiltonian can be separated into two hamiltonians, one depending only on the variable x and one depending only on the variable y, the solution to the 2D Schroedinger equation will be a wavefunction which is the product of the 1D solutions in the x and y directions, with independent quantum numbers n and m:

$$\Psi_{n,m}(x,y) = \psi_{n}(x) \ \psi_{m}(y) =\frac{2}{\sqrt{L_xL_y}} sin\left(\frac{n\pi}{L_x}x\right) \; sin\left(\frac{m\pi}{L_y}y\right)$$

In [43]:
# Defining the wavefunction
def psi2D(x,y): return 2.0*np.sin(n*np.pi*x)*np.sin(m*np.pi*y)

# Here the users inputs the values of n and m
n = int(input("Let's look at the Wavefunction for a 2D box \nEnter the value for n = "))
m = int(input("Enter the value for m = "))

# Generating the wavefunction graph
x = np.linspace(0, 1, 100)
y = np.linspace(0, 1, 100)
X, Y = np.meshgrid(x, y)
fig, axes = plt.subplots(1, 1, figsize=(8,8))
axes.imshow(psi2D(X,Y), origin='lower', extent=[0.0, 1.0, 0.0, 1.0])
axes.set_title(r'Heat plot of $\sqrt{L_xL_y}\Psi_{n,m}(x,y)$ for $n='+str(n)+r'$ and $m='+str(m)+r'$')
axes.set_ylabel(r'$y/L_y$')
axes.set_xlabel(r'$x/L_x$')

# Plotting the colorbar for the density plots
fig = plt.figure(figsize=(10,3))
colbar = fig.add_axes([0.05, 0.80, 0.7, 0.10])
norm = mpl.colors.Normalize(vmin=-2.0, vmax=2.0)
mpl.colorbar.ColorbarBase(colbar, norm=norm, orientation='horizontal')

# Show the plots on the screen once the code reaches this point
plt.show()
Let's look at the Wavefunction for a 2D box
Enter the value for n = 
Enter the value for m = 


Since the variables are independent, a vertical slice in this plot shows the y dependence of the wavefunction, thus it would look like a 1D particle in a box. Similarly, a horizontal slice gives the x dependence, and behaves as a 1D wavefunction. Let's see that:

In [41]:
# Here the users inputs the values of n and m
yo = float(input("Enter the value of y/L_y for the x-axes slice ="))
xo = float(input("Enter the value of x/L_x for the y-axes slice ="))

# Generating the wavefunction graph
plt.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
x = np.linspace(0, 1.0, 900)
fig, ax = plt.subplots()
lim1=2.0 # Maximum value of the wavefunction
ax.axis([0.0,1.0,-1.1*lim1,1.1*lim1]) # Defining the limits to be plot in the graph
str1=r"$n = "+str(n)+r", m = "+str(m)+r", y_o = "+str(yo)+r"\times L_y$"
ax.plot(x, psi2D(x,yo), linestyle='--', label=str1, color="orange", linewidth=2.8) # Plotting the wavefunction
ax.hlines(0.0, 0.0, 1.0, linewidth=1.8, linestyle='--', color="black") # Adding a horizontal line at 0
# Now we define labels, legend, etc
ax.legend(loc=2);
ax.set_xlabel(r'$x/L_x$')
ax.set_ylabel(r'$\sqrt{L_xL_y}\Psi_{n,m}(x,y_o)$')
plt.legend(bbox_to_anchor=(1.1, 1), loc=2, borderaxespad=0.0)

# Generating the wavefunction graph
plt.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
y = np.linspace(0, 1.0, 900)
fig, ax = plt.subplots()
lim1=2.0 # Maximum value of the wavefunction
ax.axis([0.0,1.0,-1.1*lim1,1.1*lim1]) # Defining the limits to be plot in the graph
str1=r"$n = "+str(n)+r", m = "+str(m)+r", x_o = "+str(xo)+r"\times L_x$"
ax.plot(y, psi2D(xo,y), linestyle='--', label=str1, color="blue", linewidth=2.8) # Plotting the wavefunction
ax.hlines(0.0, 0.0, 1.0, linewidth=1.8, linestyle='--', color="black") # Adding a horizontal line at 0
# Now we define labels, legend, etc
ax.legend(loc=2);
ax.set_xlabel(r'$y/L_y$')
ax.set_ylabel(r'$\sqrt{L_xL_y}\Psi_{n,m}(x_o,y)$')
plt.legend(bbox_to_anchor=(1.1, 1), loc=2, borderaxespad=0.0)

# Show the plots on the screen once the code reaches this point
plt.show()
Enter the value for n = 
Enter the value for m = 
Enter the value of y/L_y for the x-axes slice = 
Enter the value of x/L_x for the y-axes slice = 


Here are some questions to consider from the plots:

  • Q1: How many nodes does $\Psi_{n,m}$ have in the x axis?
  • Q2: How many nodes does $\Psi_{n,m}$ have in the y axis?
  • Q3: Can you scketch the equivalent plot for a non-symmetric box (for exampe, with $L_x = 2L_y$)?

How about the energies?
When the Hamiltonian can be separated into independent Hamiltonians, the wavefunction can be built as the product of independent wavefunctions and the energy will be given by the sum of the 1D energies:

$$E_{n,m} = E_n +E_m = \ \ \frac{ h^2}{8m_p} \frac{n^2}{L_x^2}+ \frac{ h^2}{8m_p}\frac{m^2}{L_y^2} = \ \ \frac{ h^2}{8m_p}\left(\frac{n^2}{L_x^2}+\frac{m^2}{L_y^2}\right)$$

Depending on the values of $L_x$ and $L_y$ (the lenght of the box on each side), we may get degenerated states: more than one state with the same energy.

Let's look at these Energy Levels as a function of quantum numbers and box sizes:

In [20]:
# Defining the energy as a function
def En2D(n,m,L1,L2): return 37.60597*((float(n)/L1)**2+ (float(m)/L2)**2)

# Reading data from the user
L1 = float(input("Can we count DEGENERATE states?\nEnter the value for Lx (in Angstroms) = "))
nmax1 = int(input("Enter the maximum value of n to consider = "))
L2 = float(input("Enter the value for Ly (in Angstroms) = "))
mmax2 = int(input("Enter the maximum value of m to consider = "))

# Plotting the energy levels
plt.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
fig, ax = plt.subplots(figsize=(nmax1*2+2,nmax1*3))
ax.spines['right'].set_color('none')
ax.yaxis.tick_left()
ax.spines['bottom'].set_color('none')
ax.axes.get_xaxis().set_visible(False)
ax.spines['top'].set_color('none')
val = 1.1*(En2D(nmax1,mmax2,L1,L2))
val2= 1.1*max(L1,L2)
ax.axis([0.0,3*nmax1,0.0,val])
ax.set_ylabel(r'$E_n$ (eV)')
for n in range(1,nmax1+1):
    for m in range(1, mmax2+1):
        str1="$"+str(n)+r","+str(m)+r"$"
        str2=" $E = %.3f$ eV"%(En2D(n,m,L1,L2))
        ax.text(n*2-1.8, En2D(n,m,L1,L2)+ 0.005*val, str1, fontsize=20, color="blue")
        ax.hlines(En2D(n,m,L1,L2), n*2-2, n*2-1, linewidth=3.8, color="red")
        ax.hlines(En2D(n,m,L1,L2), 0.0, nmax1*2+1, linewidth=1., linestyle='--', color="black")
        ax.text(nmax1*2+1, En2D(n,m,L1,L2)+ 0.005*val, str2, fontsize=16, color="blue")       
plt.title("Energy Levels for \n ", fontsize=30)
str1=r"$L_x = "+str(L1)+r"$ A, $n_{max} = "+str(nmax1)+r"$     $L_y = "+str(L2)+r"$ A,  $m_{max}="+str(mmax2)+r"$"
ax.text(0.1,val, str1, fontsize=25, color="black")
# Show the plots on the screen once the code reaches this point
plt.show()
Can we count DEGENERATE states?
Enter the value for Lx (in Angstroms) = 
Enter the maximum value of n to consider = 
Enter the value for Ly (in Angstroms) = 
Enter the maximum value of m to consider = 


In this graph, each state is represented by the quantum numbers $(n,m)$. For example, if $L_x =L_y$ then the state described by $(a,b)$ will be degenerate with the state described by $(b,a)$.

Going back and plotting the wavefunction for $(a,b)$ and then for $(b,a)$ you will notice that their properties are different since the number of nodes in one direction will be different from the number of nodes in the other direction (unless $a=b$).

The quantum numbers identify individual states, whereas the energies are associated with levels.